
A Minimum Contribution Mechanism for the Provision of Public
Goods

Nathaniel Neligh∗

August 15, 2021

Abstract

Public goods provision continues to be a major problem of interest for economics. Many current
methods require government level intervention. In cases where governments are unable or unwilling to
intervene, lower power mechanisms are required. Current best practice in this case is the provision point
mechanism, typically used by Kickstarter, but this mechanism does not eliminate the potential for the
free rider problem. We propose a novel minimum contribution mechanism where each player makes an
offer and then each contribution is equal to the lowest offer made. This mechanism eliminates the free
rider problem and implements the Lindahl (1958) equilibrium in weakly dominant strategies.

1 Intro
A great deal of effort in economics has been devoted to finding ways to efficiently provide public goods (and
avoid public bads) in the presence of the free rider problem. A large portion of the literature has been devoted
to finding mechanisms which allow a government or central authority with imperfect information to find the
efficient amount of public good to provide.1 This paper looks at a different problem, how can we promote
the provision of public goods when no central authority exists?

Providing public goods in the absence of central authority is of substantial importance in arenas where
political will for public good provision is limited or where no overarching authority exists. It can also be
critically important when public goods have international impacts or when donating parties are themselves
countries. This problem requires a mechanism which is individually rational and budget balanced, which most
centralized mechanisms are not. Ideally, such mechanisms are also simple and do not require participants to
pay more than they offer.

We propose a minimum contribution mechanism (MCM) where players make offers simultaneously and
then pay out proportional to the lowest adjusted offer among all participants. This approach eliminates
the free rider problem in a manner that has several appealing properties. In the first part of the paper, we
described the MCM and several variants. Then we test the mechanism in a laboratory experiment. The
mechanism is budget balanced, individual rational and implements the strongly efficient outcome in weakly
dominant strategies.

These appealing properties come from three technical features of the mechanism. First, offers are adjusted
based on Lindahl prices which allows for fair efficient outcomes.2 Lindahl prices are hypothetical prices for
public goods under which every individual pays a price for the good that is equal to their marginal benefit
and where every player demands the same amount of the public good. The use of Lindahl prices help
match individual marginal incentives with planner incentives to implement efficient outcomes. Second, the
pinning contributions to a single pivotal player allows us to match these marginal incentives while maintaining

∗University of Tennessee, Knoxville Haslam College of Business Economics Department.
1Clarke (1971); Groves and Loeb (1975); Myerson and Satterthwait (1983); Laffont (1987); Falkinger et al. (2000); Grüner

and Koiryama (2012)
2Lindahl (1958)
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a balanced budget. This also means the mechanism generates defined off path outcomes, which do not
exist in the standard Lindahl Framework. Third, using the minimum contribution as our pivot ensures the
mechanism is individually rational for all players and makes sure no one pays more than their offer. Note
that the minimum contribution element provides agents with a essentially a veto power, which is essential for
ensuring that the mechanism provides Pareto improvements. This point was first argued by Wicksell (1958)
and more recently discussed by Van Essen and Walker (2017).

Because the MCM implements the Lindahl (1958) equilibrium, the outcome will be fair in the sense
that players pay in proportional to their marginal benefit from the public good at equilibrium. Lindahl
(1958) equilibrium is generally considered a very fair equilibrium.3 However, Lindahl (1958) equilibrium can
generate “unfair” seeming outcomes in scenarios where the ratio of marginal benefits from the public good
are unstable (Van Essen (2021)).

The preeminent mechanism in for providing public good in the absence of government intervention is the
provision point mechanism mechanism (PPM) proposed by Bagnoli and Lipman (1989). Their mechanism
involves setting a contribution threshold equal to the efficient amount. If offers meet the threshold, the good
is provided. Otherwise, it is not. This mechanism implements efficient provision in all undominated equilibria
of the game.

Our MCM has several advantages over a standard PPM. First and foremost, in the MCM the efficient
outcome is implemented as the result of each player choosing their unique weakly dominant strategy. This is
potentially an important contribution, since threshold-based mechanisms often lead to coordination problems
and games of chicken where players do not contribute in the hopes of getting their more preferred equilibria
(ones where they do not pay as much).

This also means our MCM is to some degree lower risk for both policy makers and participants as there
is less uncertainty about outcomes. In a standard public goods game players face a risk that they will be the
only contributor and a risk that some players will not contribute. PPM strongly mitigate the first risk but
due not eliminate the second. A MCM removes both of these free riding risks.

Both the provision point mechanism and the MCM are generally information intensive. Setting the
correct provision point requires knowing player preferences. Setting the correct offer multipliers in the MCM
similarly requires such preferences to be known by the mechanism designer. Both the PPM and the MCM
require less information if come structure is imposed. The PPM does not require knowledge of preferences if
the public good is binary.4 The MCM does not require knowledge about the overall marginal return on the
public good as long as the players receive a known constant share of the marginal benefits.

Traditionally, The Wilson (1987) critique has been leveled at mechanisms of this type due to their reliance
on the knowledge of preferences. If preferences are commonly known, why do the agents not simply contract
on an efficient outcome? We counter that the act of negotiating a contract is often a source of barriers and
frictions.5 Substantial resources can be spent in trying to secure more of the surplus generated by a contract
and sometimes parties fail to agree even on highly profitable joint ventures. Unlike with take it or leave it
offers, trying to restart or rerun the MCM will not lead to different results.

There are also situations where contracting is effectively impossible due to legal or practical barriers.
Furthermore, PPMs are frequently used by real world charities6 and form the basis of funding platforms like
Kickstarter, suggesting mechanisms of this type are worth considering.

It is likely that MCMs will be particularly useful in scenarios where the ratio of benefit from the public
good easy to approximate and relatively stable. For example, if the public good is a research project conducted
by several manufacturing firms in the same industry to help reduce the cost of production per unit, the benefit
from the research is likely to be proportional to the market share of each firm.

The fact that the MCMs do not require efficient contribution levels as an input may also make them more
resistant to manipulation. Anecdotally, in many public goods and bads problems in the past, individuals

3Sato (1987); Buchholz and Peters (2007)
4Bagnoli and Lipman (1989). Note that a low information sequential PPM mechanism can theoretically be used in cases

where better resolution is needed, but adding more provision levels has been shown to hinder performance in the lab. See
Bagnoli et al. (1992) and Normann and Rau (2014).

5There is a large literature on the topic of frictional and incomplete contracts. A small sample of the related papers includes
Antràs (2003); Antràs (2005); Acemoglu et al. (2007).

6Bagnoli and McKee (1991)
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who would be expected to bear a large portion of the costs have typically attempted to muddy the waters on
how much public good or bad is desirable and how much each individual should pay. Consider the behavior
of petroleum companies regarding global warming. The MCM shuts down this avenue of manipulation.7
Also, in settings where the public good is provided by an organization, there may be an incentive to increase
contributions beyond efficient levels. With a MCM, there is no way to manipulate values in order to get
over-provision of the public good.

As alluded to, our MCM can be adapted to address questions of public bads and resource extraction,
which is difficult to do with the PPM due to lack of enforceable exclusion.8

The provision point mechanism has been experimentally shown to provide generally provide efficient
outcomes in scenarios where groups are given time to converge to an equilibrium or when the focal contribution
levels generate an efficient outcome, but there is still room for improvement in more hostile environments.9
We hope our MCMmight help fill in the gaps and perform well with single shot games without focal equilibria.

There is also evidence that a lot of observed public good contributions in the lab are the result of confusion
or a poor understanding of public-private trade-offs inherent in the game.10 When players are unsure of the
rules or incentives in an economic game, they are likely to choose actions randomly or pick actions in the
middle of the range to avoid large errors. The public-private trade-off is still a feature of provision point
mechanisms. It is therefore possible that the PPM’s success in the lab may be partially due to confusion. It
may be less successful with sophisticated actors like firms, professionals, and nations or in conditions where
default behavior is not contributing. On the other hand, the MCM eliminates the public-private trade-off,
so sophistication and defaults are unlikely to present a problem.

Our experiment is designed to see whether the MCM performs well in scenarios where the PPM does
poorly. Games will be one shot with no feedback and in half of treatments there will be no obviously correct
way for all players to contribute in order to reach efficiency. Instructions will be written with the lessons
of Ferraro and Vossler (2010) in mind, presenting a range of example payoffs that clearly show the public-
private tradeoff as well as a specialized calculator for each problem. The agents will be individual college
students, however, so lack of sophistication may still be an issue. Since the PPM performs in the presence
of heterogeneity and homogeneity11 we will include treatments with these properties in order to see if the
MCM is as successful in both contexts.

The paper is laid out as follows. Section 2 lays out the basic framework. Section 3 describes the MCM
and its properties as well as introducing a dynamic version of the game for when the mechanism maker does
not know prices. Section 4 provides a background for how the mechanism works in imperfect conditions
including the presence of noise and manipulation. This includes a method for comparing the outcomes of
various imperfect mechanisms including the MCM and various distortions of the VCM.

Section 6 lays out an outline for an experiment testing the theory. More to come in the future.

1.1 Literature
Buchholz et al. (2014) consider a mechanisms for the private provision of public good which is based on social
norms and punishment. This type of mechanism requires additional structure on the game and preferences
including pre-commitment of enforcement resources. Also, the Buchholz et al. (2014) mechanism in general
does not produce an efficient outcome even disregarding the resources spent on enforcement.

The closest thing in the literature to the MCM we use was proposed as an auction mechanism by Goeree
et al. (2005). They examined games where an item was auctioned off to raise money for a linear public good.
Goeree et al. (2005) found that the minimum price all pay auction was the revenue maximizing auction. Our
models intersect in a special case of each. The special case of the Goeree et al. (2005) model is the one in
which the value of the auctioned good is zero. The special case of our model is one in which the public goods
provision technology is linear and the impact is homogeneous.

7Other avenues of manipulation may still exist. See Section 4.2.3 for more discussion of manipulation in the MCM
8See Appendix B
9Bagnoli and McKee (1991), Rondeau et al. (1999)

10Ferraro and Vossler (2010)
11Rondeau et al. (1999)

3



Empirically, a mechanism like the one proposed by Goeree et al. (2005) did not perform well when tested.12
It failed to reach theoretical contribution levels and failed to beat other public good funding mechanisms. We
hypothesize that the auction framing may have effectively reintroduced the free rider problem psychologically
even while the minimum price component eliminated the free rider problem mathematically. Individuals are
often reluctant to contribute to public goods, since they do not want to subsidize free riders. Similarly,
individuals are likely to be reluctant to bid in all pay auctions, because they do not want to subsidize the
single auction winner. In both cases, participants do not want to risk footing the bill for someone else’s
unfair/unearned benefit.

Experiments have tested public good provision in many different settings and with many different mech-
anisms. Ledyard (1995) provides a good survey of some of the earlier work in this area showing that contri-
butions tend to be responsive to communication, group size, and the marginal impact of the public good.

Carpenter (2007) found that group size does not decrease public good contributions when punishment is
possible and contributions can be monitored. They also provide a good review of other experiments with
punishment in public goods games. More recently, Stagnaro et al. (2017) find that centralizing punishment
mechanisms increase pro-social behavior without increasing actual amounts of punishment.

Corazzini et al. (2010) and Lange et al. (2007) both test a number of fundraising mechanisms for public
goods including voluntary contribution mechanisms, charity auctions, and charity lotteries. Both studies
found that lotteries performed best out of all tested mechanisms in terms of maximizing contributions. Car-
penter and Matthews (2017) tested types of charity raffles and found that, contrary to theoretical predictions,
a “pay what you want” raffle works best.

Reif et al. (2017) test the mechanism proposed by Buchholz et al. (2014) and find that it sustains sub-
stantial public good provision but can lead to over-investment in norms enforcement.

2 Theory
In this game there are players i ∈ I = {1, ..., I}. All players make offers x = (x1, ...., xi, ..., xI) simultaneously
where xi ∈ R+. Based on the offers made, a set of contributions is generated y = (y1, ...., yi, ..., yI). The
mapping from offers to contributions depends on the mechanism involved.

Individuals get utility from the total public good provided and private consumption in the form, ui(Y,−yi),
where ui(•) is a weakly concave, increasing, and satisfies the Inada like conditions d

dyi
ui(0, 0) = 0, d

dY ui(0, 0) >

0. Here Y =
∑I
i=1 yi. For the main body of the text, we assume ui(•) is everywhere continuously differen-

tiable, but this is not a critical assumption. For convenience we normalize ui(0, 0) = 0.
In terms of solutions, we will be focusing on pure strategy Nash equilibria and equilibrium in weakly

dominant strategies when it is available.

2.1 Efficiency
In this setup, a Pareto Efficient allocation is a set of contributions yi summing to Y for which there is no
other allocation which provides all players at least as high of payoffs and at least one player higher payoffs.
Samuelson (1954) showed that an allocation in a public goods economy is Pareto Efficient, if and only if

I∑
i=1

MRSi(Y, yi) = 1

Where the marginal rate of substitution

MRSi(Y, yi) :=
d
dY ui(Y,−yi)
d
dyi

ui(Y,−yi)

12Corazzini et al. (2010)
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2.2 The VCM
As a point of reference, we first consider the public goods contribution problem when no mechanisms are in
place. The amount players offer is equal to the amount they pay in to the public good. In this game, each
player is picking

yV ∗i = arg max
yi

ui

 I∑
j=1

yj ,−yi


With a total equilibrium contribution level Y ∗V =

∑I
j=1 y

V ∗
i

Under our assumptions, this solution satisfies the condition

MRSi
(
Y ∗V , y

V ∗
i

)
= 1

Which means the Samuelson condition is generally not satisfied in this case.

2.3 Lindahl Equilibrium
In our simplified public goods economy. A Lindahl Equilibrium is a set of contributions y∗i summing to Y ∗
and a set of prices p∗i such that

arg max
Yi

ui(Yi,−p∗i Yi) = Y ∗i = Y ∗∀i

Note, that here

yi = p∗i Yi

In other words it is a set of personal prices for the public good in which everyone demands the same
amount of public good and the amount provided is equal to the amount demanded. Foley (1970) has shown
that under the conditions we employ, the Lindahl Equilibrium exists and is Pareto Efficient. Efficiency can
be seen from the optimality condition

MRSi(Y
∗, y∗i ) = p∗i

and the fact that budget guarantees

I∑
i=1

p∗i = 1

Together these two facts give us Samuelson’s Condition. However, Lindahl equilibrium is not easily
implementable in a game theoretic sense, since there is no mechanism defining what happens outside of
equilibrium. This is one of the major issues the MCM is designed to solve.

There is not generally a closed form solution for the Lindahl Equilibrium, so finding the Lindahl prices
generally requires both the full knowledge of all player’s preferences and significant computation. Generally
knowing the preferences is a more economically significant than computing the prices except in cases with
very unsophisticated agents. In Section 4, we discuss several potentially realistic cases where the knowledge
and computational burden are much lower.
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3 The MCM
Now we formally introduce the MCM for converting offers into contributions. This mechanism states that

yi = pi ∗min
j

xj

pj

Where pi is the weight for player i and
∑I
i=1 pi. Note that in this case

Y =

I∑
i=1

yi = min
j

xj

pj

I∑
i=1

pi = min
j

xj

pj

Under this mechanism, players pay out a weighted amount based on the lowest adjusted offer. In the case
were pi is identical across individuals, this corresponds with each player contributing the minimum offered
amount.

Note that in this setup the player i picks xi to solve

x∗i = arg max
xi

ui

(
min

(
xi

pi
, xk

pk

)
,−min

(
xi, pi

xk

pk

))
where

k = arg min
j 6=i

xj

pj

3.1 Properties of the MCM
The first thing to note is that under the MCM, the individual’s offer selection problem can be rewritten as
a problem where the individual selects a total contribution level.

Y ∗i = arg max
Yi

ui
(
min

(
Yi, Y

i
min

)
,−pi min

(
Yi, Y

i
min

))
(1)

Where

Y imin = min
j 6=i

Yj

Note that min
(
xi, pi

xk

pk

)
= pi ∗min

(
xi

pi
, xk

pk

)
.

There are a few things which are essentially immediate from this formulation.

Proposition 1. The MCM with Lindahl weights implements the corresponding Lindahl Equilibrium in weakly
dominant strategies.

Proof. Note that 1 is a restricted version of

Y ∗i = arg max
Yi

ui(Yi,−p∗i Yi)

The solution of this is Y ∗i = Y ∗. Note that, since ui(•) is concave, the objective function is weakly
increasing on the interval [0,max(Y ∗)].

By definition, the objective function is the same for all elements of Y ∗ and is worse for any Yi > max(Y ∗).
Therefore, regardless of Y imin it is weakly optimal to pick Yi ∈ Y ∗ and the player is ambivalent between all
elements of the set.

This is the most important feature of the mechanism. It eliminates the free rider problem by refunding
those who make high offers. It is important to note that, while the MCM does implement the efficient outcome
as the result of each player choosing their unique weakly dominant action, there are still other equilibria.
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Corollary 1. The equilibrium of the minimum contribution game is not generally unique

Proof. Simply note that, in addition to the previous equilibrium of Yi ∈ Y ∗∀i there is another equilibrium
where Yi = 0∀i. Also Y ∗ may not be single valued, so there may be multiple efficient equilibria.

However, these other equilibria are not efficient and are not the result of dominant strategies, so they are
generally less plausible.

In addition to implementing the efficient outcome, this mechanism also has a number of nice features.
Firstly, it is budget balanced. The amount spent on the public good is the exact sum of contributions. This
is very helpful for mechanisms that can’t rely on governments or other entities which can destroy and create
money. In addition, no player will ever pay out more than their offer, because

pi ∗min
j

xj

pj
≤ xi

As a result, the mechanism could be implemented through a system of refunds.
Second, the mechanism is individually rational in the sense that a rational player (one choosing Yi ∈

[0,max(Y ∗)]) will always make weakly more than 0 regardless of how others play. This mechanism always
generates Pareto improvements with optimizing agents due to the veto power held by individual contributors.

Finally, the mechanism has a certain type of fairness in scenarios where some individuals get consistently
higher marginal benefits from public goods. An individual who gets higher marginal benefit from the public
good pays proportionally higher cost.

In many cases the mechanism maker and participants may not have common knowledge of all player’s
preferences. If only the mechanism maker is unaware, efficiency is still achievable with only minor sacrifices
(see Appendix C). In cases where preferences are not common knowledge, it may be possible to extract
a player’s information about the incentives of others. However, this extraction will be incomplete, since
information about the preferences of others will often contain information about one’s own preferences. To
see one example where information is extracted efficiently see Section C.1.

In many cases it will not be possible to fully extract information from players. We discuss the impacts of
such problems in the next section.

4 Special Cases and Imperfect Implementation
There are a number of special cases where the Lindahl prices have convenient forms. These environments are
very useful for examining issues like manipulation and imperfect information and for comparing results.

As noted in the introduction, this mechanism is not designed to elicit information about the preferences
of the participants. Instead this mechanism is designed to solve a coordination problem in the absence of
overarching government authority. As such, the mechanism is information intensive, requiring the ui(•)s to
be commonly known or at least known to the mechanism facilitator. Imperfect information can reduce the
effectiveness of the mechanism.

There is also a practical question of how, even if the ui(•)s are known to participant, are they assigned
in the mechanism. If the mechanism is implemented by a neutral third party, this should not be a problem.
However, it may be difficult to find a fully informed neutral third party in practice. In cases where the
mechanism is implemented by an interested party there is the potential for manipulation by the mechanism
maker. We consider both of these problems below with the aid of some additional structure.

4.1 Quasi Linear Preferences
Consider an environment with quasi-linear preferences so

ui(Y, yi) = gi(Y )− yi
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Where gi(•) is increasing, concave, and continuously differentiable. In this setting we can make stronger
statements about efficiency, because all Pareto optimal allocations are also strongly efficient in the sense of
maximizing the sum of utilities. With quasi-linear utility, we can meaningfully talk about a social planner
who wants to maximize social utility.

In other words they want to choose

Y ∗ = arg max
Y

∑
i

(gi(Y ))− Y (2)

Because the payoffs are linear in contributions, the planner does not care how the contributions are divided
among participants. The solution to the planner problem satisfies the FOC∑

i

(g′i(Y
∗)) = 1

Since the marginal cost of contribution is always 1, the marginal rate of substitution for a player is then

MRSi(Y ) = g′i(Y )

Note that, since the Lindahl Equilibrium is Pareto efficient, and Pareto efficiency coincides with strong
efficiency in when utility is quasi-linear, the Lindahl Equilibrium is strongly efficient. Together these facts
mean it is computationally quite easy to find the Lindahl prices in this case.

p∗i = g′i(Y
∗)

Instead of a complex multi-dimensional optimization problem over prices, one merely needs to solve the
single dimensional planner problem and plug in the result.

4.2 Proportional Benefit
In order to address questions of manipulation and imperfect information in a disciplined way, we need to
impose still more structure on preferences. In addition to quasi-linearity we require that each individual
receive a constant proportion of the benefit from the public good. In other words we require

ui(Y, yi) = δig(Y )− yi
Where

∑
δi = 1 and g(•) is increasing and concave. We drop the assumption of continuous differentiability

here, because it does not substantially simplify the discussion. In this environment the planner problem
becomes

Y ∗ = arg max
Y

∑
i

(gi(Y ))− Y (3)

and the Lindahl Prices are simply

p∗i = δi

While this structure is quite strong, we contend that it is at least approximately valid for many real world
settings. In the Introduction we mention an R&D example where benefit was proportional to market share.
In general, there are a number of situations where the benefit from a public good is roughly proportional to
obvious features of an entity. Ocean conservation may provide benefits proportional to the size of a country’s
fishing industry. The benefits of a parking lot expansion in a mall may be roughly proportional to a store’s
peak-time customer load. The benefits of a disease cure to one nation are roughly proportional to the average
yearly cost of dealing with the disease in that country.

We will want some easy way to compare outcomes of the MCM to the VCM in the presence of manipulation
and imperfect information. Given the proportional benefit structure of this game, we can make use of the
following proposition to easily compare outcomes.
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Proposition 2. If Y (k) = arg maxY κ ∗ g(Y ) − Y , then Y (k) is increasing in k (in the strong set order
sense)

Proof. This result is an application of Milgrom and Shannon (1994). We simply need to show that
f(Y, k) = k ∗ g(Y ) − Y has increasing differences in (Y, k). To see this, consider Y > Y ′. We know
f(Y, k)− f(Y ′, k) = k ∗ (g(Y )− g(Y ′))− (Y − Y ′). Since g(•) is increasing in Y , this difference is increasing
in k.

Note that we will not be theoretically comparing the performance of the MCM and the provision point
mechanism under imperfect information, because the distortions affecting these two mechanisms are es-
sentially orthogonal. The MCM is impacted by distortions in δi but not g(Y ) while the provision point
mechanism is impacted by distortions in g(Y ) but not δi. The results are therefore largely mechanical and
come down to determining which type of distortion is larger given assumptions.

4.2.1 VCM Game with Proportional Benefit

As a point of reference, we first consider the public goods contribution problem when no mechanisms are in
place. The amount players offer is equal to the amount they pay in to the public good. In this VCM game,
each player is picking

y∗i = arg max
yi

gi

 I∑
j=1

yj

− yi
This differs substantially from the planner problem. In order to be compatible with Proposition 2, we

employ the following result.

Proposition 3. In all pure strategy Nash equilibria, the VCM implements some

Y ∗V ∈ arg max
Y

(
max
i

(δi) ∗ g(Y )− Y
)

(4)

Proof. Note, by the concavity of g(Y ), the argmax must be an interval. Proof is by contradiction.
Imagine that there is a pure strategy Nash equilibrium where a Y < min(Y ∗V ) was implemented. Say

i∗ ∈ max
i

(δi)

Player i∗has an objective function of

max
yi∗

δi∗g(Y−i∗ + yi∗)− yi∗

Where Y−i∗ < Y ∗N is the sum of contributions from players other than i∗. This objective function can be
rewritten as a total player contribution selection problem

max
Y

δi∗g(Y )− Y + Y−i∗

st Y ≥ Y−i∗

Since Y−i∗ is fixed, this is the same problem as the one in the Proposition with the added restriction.
Note that the restriction cannot bind at the optimum if we are assuming a Y < min(Y ∗V ) was implemented.
As such, if Y < Y ∗V is implemented, player i∗has a profitable deviation by increasing their contribution.

Now imagine there is a Nash equilibrium which implements Y higher than max (Y ∗V ). Let î be some player
that contributes in this equilibrium. They have an objective function

max
yî

δîg(Y−î + yî)− yî
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Define

Ŷ ∗ ∈ arg max
Y

δîg(Y )− Y

Note Player î’s objective function is strictly decreasing in Y for all Y > max
(
Ŷ ∗
)

Player î’s objective function can be rewritten as a total player contribution selection problem

max
Y

δîg(Y )− Y + Y−î

st Y ≥ Y−î

Which has a solution of a max(Ŷ ∗, Y−î), which by Proposition 2 is less than the implemented value, so
Player δî can profitably decrease his contribution.

Finally, we must show that there is a PSNE implementing Y ∗V . To see this note that there are PSNE’s
where only i∗ contributes, and in such cases his optimization problem is equivalent to 4.

4.2.2 Incorrect Prices

First we consider what happens when mechanism is implemented imperfectly in a general sense. We will later
apply more structure to make stronger statements. In this case the true value extracted by the participants
is not the same value that is used in the mechanism. Say that the mechanism assigns a potentially incorrect
weight pi to each participant.

In this case each participant is choosing

Y iinc ∈ arg max
Yi

δi ∗ g
(
min

(
Yi, Y

i
min

))
− pi ∗min

(
Yi, Y

i
min

)
(5)

Where

Y imin = min
j 6=i

Yj

Proposition 4. The game of incorrect prices can implement in dominant strategies the solution to

Y ∗inc ∈ arg max
Y

(
min
i

(
δi
pi

)
g (Y )− Y

)
Proof. To see this, note that 5 is the same as

Y iinc ∈ arg max
Yi

δi
pi
∗ g
(
min

(
Yi, Y

i
min

))
−min

(
Yi, Y

i
min

)
Similar to the proof of Proposition 1, the concavity of g(•) guarantees that player i’s objective function

is increasing in Yi∀Yi ∈ [0,max
(
Y i∗inc

)
] where

Y i∗inc ∈ arg max
Yi

(
δi
pi
g (Yi)− Yi

)
As such, it is a weakly dominant strategy to pick Yi ∈ Y i∗inc. If all players do this the minimum Yi chosen

gets implemented. From proposition 2, we know that the Y i∗incs are related by the strong set order with the
lowest set corresponding to the minimum δi

pi
. Therefore, the implemented Yi must be an element of the lowest

Y i∗inc corresponding with the lowest δi
pi
.

10



4.2.3 Manipulation

Say that one agent, j assigns pi for all players with the restriction that
∑I
i=1 pi = 1. He knows the true

pis, but gains some benefit from the public good and therefore is potentially on the hook for some of the
cost. The game operates in two stages. First, the manipulator chooses δis, then all players (including the
manipulator) make their offers simultaneously. Assume that after weights are assigned, players play the
equilibrium described in Proposition 4.

Then there are two potentially competing pulls on the manipulator. By changing the values of pi, they
can reduce the fraction of the public good they have to pay for, but any manipulation will also reduce the
total amount of public good provided, since manipulation will always reduce mini

(
δi
pi

)
.

The result is given by the following proposition

Proposition 5. If the mechanism weights are determined by individual j, the MCM will implement Y ∗man
total contributions in weakly dominant strategies, where

Y ∗man = arg max
Y

(
1−δj
1−pj g (Y )− Y

)
and pj ∈ [0, δj ]

Proof. The manipulator will always want to pick pj ≤ δj . We show this by contradiction. Note that he
can implement Y ∗ by setting pj = δj . Say the manipulator picks pj > δj . Define

Ỹj = arg max
Yi

(δj ∗ g (Yj)− pjYj)

We know

δj ∗ g (Y ∗)− δjY ∗ ≥ δj ∗ g
(
Ỹj

)
− δj Ỹj > δj ∗ g

(
Ỹj

)
− pj Ỹj

Hence pj cannot be optimal.
Given his own mechanism weight pj > δj , the manipulator will want to maximize total contributions Y .

To see this, note that

δj
pj
∗ g (Y )− Y

is increasing in Y for all Y ∈ [0, Ȳ ∗j ] where

Ȳ ∗j ∈ arg max
Y

δj
pj
∗ g (Y )− Y

Note that Ȳ ∗j > Y ∗ by Proposition 2. Therefore, the manipulator’s objective function is increasing in Y
for the entire range of Y s that is feasible given pj > δj .

Since the equilibrium Y depends on the lowest δi
pi
, it is optimal to allocate the pi in such a manner as

equalizes this across all other individuals.
We know

1− pj =
∑
i6=j

pi

So we have

pi =
1−pj
1−δj δi

Which satisfies the summand and the requirement that pj
δj

be equalized.
Therefore,

δi
pi

=
1−δj
1−pj ∀i 6= j

11



Therefore all players other than j will make offers that implement Y ∈ Y ∗man, and player j will make an
offer weakly greater than Y ∗man.

4.3 Comparison of Outcomes
We would now like to compare the outcomes in the manipulation and imperfect information cases with the
efficient and VCM outcomes. We can use Proposition 2 for this comparison, since most of the discussed
outcomes implement a total contribution that can be written as the result of an optimization of the proper
form. Now we can compare different scenarios and mechanisms based on the corresponding Proposition 2 κ
value in order to rank them for total public goods contributions. The following table summarizes the result

Mechanism/Situation κ Implemented Y
Social Planner 1 Y ∗

Minimum Contribution Perfect Conditions 1 Y ∗

VCM maxi δi Y ∗V

Minimum Contribution Incorrect Information mini

(
δi
pi

)
Y ∗inc

Homogenous Price MCM mini (Iδi) Y ∗hom
Minimum Contribution Manipulation 1−δj

1−pj Y ∗man

Note that in all cases κ ≤ 1, so there is no risk of inefficient over-contribution. We know that Y ∗ is
optimal and higher than the other implemented Y s in the table, but it is not immediately obvious how Y ∗N ,
Y ∗inc, and Y ∗man rank. The next few sections are devoted to exploring that ranking.

In general the MCM with manipulation will be more efficient than the VCM.

Corollary 2. The VCM can only be more efficient than the MCM with manipulation if the manipulator’s
δj > 0.5

Proof. Since pj ∈ [0, δj ], we know that 1−δj
1−pj ∈ [1− δj , 1]. This implies that manipulation has a higher k

as long as maxi (δi) ≤ 1− δj where j is the manipulating agent.
It is only possible for the manipulation mechanisms k to be lower if maxi (δi) > 1− δj . Note

1− δj =
∑
i 6=j

δi ≥ δi∀i 6= j

So this can only happen if δj = maxi(δi) in which case we need

δj > 1/2

Note that δj > 1/2 does not guarantee that the MCM with manipulation performs worse than the VCM,
but we can construct examples where it does. See Appendix A for such an example.Note that the best case
manipulators will always perform better than the VCM since minj δj < 1/2

The VCM and the MCM with imperfect information cannot be easily compared without imposing a bit
more structure on the δis and pis. By imposing some structure we can also get insights regarding how we
should expect the different mechanisms to perform as the size of the group gets large. We begin by imposing
structure in the δis

12



4.3.1 Random δs and Large Groups

Say that there is random heterogeneity in the incidence of the public good of the form

δi = ηi∑
l ηl

Where ηis are drawn independently from a distribution with a weakly positive domain and a CDF Fη(•)
and a mean η̄.

Under this assumption we immediately have a few results

Proposition 6. If g(•) is continuous and limI→∞ Fη(Ic)I = 1∀c, then as I →∞, Y ∗V converges in probability
to 0.

Proof. If g(•) is continuous, then by the theorem of the maximum Y (k) is a continuous function of k.
This means that Yk →p 0 as k →p 0. As such, it suffices to show that maxi δi →p 0

max
i
δi = maxi ηi∑

l ηl
=

1
I maxi ηi
1
I
∑

l ηl

Note 1
I

∑
l ηl →p η̄. Since Slutzki’s Theorem guarantees that the limit of the ratio is the ratio of the

limits, we just need to show

1
I max

i
ηi →p 0

Note that P
(

1
I maxi ηi < c

)
= P (maxi ηi < cI) = F (cI)I , so by the definition of convergence in proba-

bility, we are done

Note that the condition on F (•) holds for many standard distributions (like the exponential), but it fails
for extremely fat-tailed distributions like the power law distribution. In order for the VCM not to converge
to zero contributions, the distribution must have a large enough tail that the largest draw as a fraction of
the total draws does not tend to zero. In other words the largest proportional individual stake in the public
good must remain positive.

Note that as a corollary, the MCM with manipulation can generally be expected to perform well with
large groups when δs are random.

Corollary 3. If g(•) is continuous and limI→∞ Fη(Ic)I = 1∀c, then as I → ∞ the implemented Y ∗man
converges in probability to Y ∗.

Proof. To see this note that the worst case of δ̄j = 0 generates a k = 1− δj = 1− ηj∑
l ηl

. Therefore k is

bounded below by 1 −maxi

(
ηi∑
l ηl

)
. As discussed in the proof of Proposition 6, maxi

(
ηi∑
l ηl

)
→p 0 under

the conditions provided on Fη(•) and Yman →p Y
∗ as long as g(•) is continuous and k →p 1.

Note that this proposition gives worst case assuming the worst manipulator. Generally performance will
be better.

4.3.2 Random Noise and Imperfect Information

In order to compare the VCM to the imperfect information and manipulator cases, we must impose some
structure on the noise. We assume

pi = δiεi∑
l δlεl

Where εis have a are drawn independently from a distribution with a weakly positive domain and a CDF
Fε(•) and a mean ε̄. Assume δis are randomly generated as before independently of the εis.

13



Proposition 7. If εi is not bounded above, then as I →∞ the provision level Y ∗imp converges in probability
to 0.

Proof. In this case, the corresponding k is given by

min
i

(∑
l δlεl
εi

)
=

∑
l δlεl

maxi εi

If we apply the random generation of δis as before, we get
∑

l ηlεl
maxi(εi)∗

∑
l ηl

By the law of large numbers, the independence of ε and η, and the law of total expectation we have

1
I
∑

l ηlεl

maxi(εi)∗
1
I
∑

l ηl
→ η̄ε̄

η̄ ∗ lim
I→∞

(
1

maxi(εi)

)
Which simplifies to

lim
I→∞

(
ε̄

maxi(εi)

)
Which goes to 0 if maxi (εi) is not bounded

Neither the VCM nor MCM with noise perform well with large groups. There are scenarios where both
mechanisms converge to zero provision as the group size gets larger.

For finite group size, we can directly compare the corresponding k values to see when one mechanism
should outperform the other. The MCM with noise performs better when

∑
l ηlεl

maxi(εi)∗
∑

l ηl
≥ maxi ηi∑

l ηl

or when ∑
ηlεl ≥ max

i
(ηi) max

i
(εi)

Notably the MCM performs better when noise and/or heterogeneity is small. It is only when both
heterogeneity and noise are large that the VCM can perform better. With a sample size of one, both
mechanisms are equal. As group size grows, the left hand side of the inequality grows linearly. For the right
hand side to grow that fast requires highly fat tailed distributions for both η and ε.

5 Mechanisms for Charitable Contributions
[Incomplete]

6 Experimental Design
Incomplete
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A Manipulation Worse than VCM Example
Consider the following setup. There are two individuals with δ1 = 3

4 and δ2 = 1
4 . Assume g(y) is piece-wise

linear. The first section has a horizontal length Y1 and has a slope 4 + ε. The second piece has a horizontal
length Y2 and has slope 4

3 + ε. The remainder has slope of the second section times δ1 is greater than 1.
If player 1 is the manipulator, he can implement Y1choosing δ̄j = 0 or Y1 + Y2 by choosing δ̄j such that

1/4

1−δ̄j
(4/3 + ε) > 1

(1/3 + ε/4) > 1− δ̄j

δ̄j > 2/3− ε/4

We can make Y2 arbitrarily small such that the utility gains going from the first kink to the second are
negligible, but the difference in cost is approximately (2/3)Y1. If Y1 is relatively large, manipulator will
implement Y1 which is slightly smaller (and slightly less efficient) than the natural mechanism outcome.
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B Public Bads
In this appendix we rewrite the problem as a public bads extraction problem. This formulation is very
important, as public bads are related to some of the most important issues currently facing our planet such
as global warming and over-fishing. As we discuss, this mechanism has the potential to provide a great deal
of value in this domain, although some major public bads present unique challenges that this mechanism
alone will not be sufficient to overcome.

Consider a public bads version of the game where

ui = bi − δig(B)

Here bi is the amount extracted by player i and B =
∑
bi

Now g(B) is a convex function

B.1 VCM Problem
As a point of reference, we first consider the public bads contribution problem when no mechanisms are in
place. The amount players ask is equal to the amount they extract from the public good. In this VCM, each
player is picking

b∗i ∈ arg max
bi

bi − δig(B)

This will implement

B∗N ∈ arg max
B

B −min
i

(δi) ∗ g(B)

Since the player with the lowest δi will keep extracting until this level is met. Note this is in some ways
worse than the public goods example, because public bad levels are determined by the worst single player for
the job rather than the best. If a player is not impacted at all by a public bad (δi = 0), then the amount of
public bad generated will essentially be infinite.

B.2 Planner Problem and Efficiency
The planner wants to maximize the sum of utilities. In other words they want to choose

B∗ ∈ arg max
B

B − g(B)

Because the payoffs are linear in contributions, the planner does not care how the extractions are divided
among participants. By inspection, we can see that the VCM will not produce the efficient sum of total
extractions.

B.3 Optimal Ask Mechanisms
The core features of the MCM is that all players pay the same adjusted amount in and that palyers are locally
solving the planning problem. In principal this could be based on the maximum contribution or quantile
contributions without changing much. The minimum contribution was chosen to ensure that players do not
pay in more than they offer and to guarantee individual rationality for participation in the mechanism. The
outside option of paying nothing into the mechanism is fairly obvious.

With public bads, the outside option is a bit less obvious. Is the outside option extracting nothing or
extracting as much as you want? I suggest two possible mechanisms based on whether it is easier to prevent
extraction or force extraction of the public bad. If neither one is possible, then the mechanism is unlikely to
be successful in any form

Minimum Ask
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If extraction can be easily prevented, the outside option would be all players extracting nothing. Here
a minimum ask mechnism can be used. Each player asks for an extraction level xj . They are allowed to
extract.

bi = δi ∗min
j

xj

δj

Note that in this case

B =

I∑
i=1

bi =

I∑
i=1

δi ∗min
j

xj

δj
= min

j

xj

δj

Under this mechanism, players extract a weighted amount based on the lowest adjusted proposed extrac-
tion.

Note that in this setup the player i picks xi to solve

x∗i ∈ arg max
xi

δi ∗ g
(

min
(
xi

δi
, xk

δk

))
−min

(
xi, δi

xk

δk

)
where

k = arg min
j 6=i

xj

δj

As in the public goods case, this mechanism implements the efficient outcome in dominant strategies. It
is also individually rational to participate in this mechanism, since non-participation has the same effect as
asking for zero extraction, which is an option.

In cases where the public bad is finite, and it is efficient to extract it all, one can simply split the quantity
based on δi

Maximum Ask
The case where the public bad is not excludable but extraction can be enforced, a slightly different

mechanism is needed. In this case, a player may choose to forego participation in the mechanism and extract
as much as they want. In this case, one could use a maximum ask mechanism which forces each player to
extract.

bi = δi ∗max
j

xj

δj

In this case an extraction by a non-participant can be treated as an ask. This mechanism also implements
the efficient extraction level in dominant strategies, but it brings a number of unique challenges.

First if the public bad is finite, it may not be possible to force extraction level dictated by the mechanism.
There is also a serious fairness concern in cases where historical extraction has already taken place. One

could theoretically treat historical extraction as part of the ask, but that might lead to catastrophic extraction
levels, since those extractions were not made with this mechanism in mind. In that case some kind of start
date for the mechanism must be chosen. Earlier dates are generally fairer in an absolute sense, but they are
also likely to lead to inefficiently high extraction.

In general the case where extraction of the public bad cannot be blocked are challenging.

C Checked Leader MCM
The MCM as described requires the mechanism maker to have full knowledge of the preferences of all
individuals involved in the public good as is typical in discussions of the PPM. However, there are other
informational environments that the PPM can be adapted to. For example, the PQ mechanism of Van Essen
and Walker (2017) works well in environments where the mechanism maker has no knowledge but preferences
are common knowledge among participants.
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We can also adapt the MCM for such an environment. There are actually a number of ways to do this,
but we will focus on the most illustrative called Checked Leader MCM (CL-MCM).

This mechanism enriches the MCM into a 3 stage game. There are two players (a Leader and a Checker)
who each have special roles in this mechanism, they should be selected based on the amount of information
they possess. Say that Player 1 is the Checker and Player 2 is the Leader

The Checked Leader MCM goes like this

1. The Checker picks p2 for the Leader

2. The Leader picks p−2 (all pi other than p2) subject to
∑
i 6=2 pi = 1− p2

3. Players play MCM game

After the final stage, the checker faces a penalty if Y2 6= Y3. This guarantees p2 is picked correctly, since any
other pick will cause discrepancy. Note that this penalty does remove the guarantee of budget balance and
of individual rationality for the checker, although this will not be relevant in equilibrium and the mechanism
can be guaranteed not to run a deficit. In practice the other participants could provide a prize to the checker
with the penalty being not receiving the prize. This could restore the guarantee of individual rationality.

For this game we introduce a new equilibrium refinement.

Definition 1. A Weak Dominant Strategy Subgame Perfect Equilibrium (WDSSPE) is a subgame perfect
equilibrium where players play weakly dominant strategies in any subgame where they are available.

Given this definition we have the following result

Proposition 8. Assuming common knowledge of preferences with the group and that all utility functions
are continuously twice differentiable and strictly concave, then there exists a WDSSPE of the CL-MCM
implements the Lindahl Equilibrium and reveals Lindahl Prices.

Proof. Stage 3: We work by backwards induction. We know in the final stage that each person has
one weakly dominant action (strict concavity gives uniqueness), and that each players dominant actions are
decreasing in pi. Call the resulting adjusted offer Yi(pi). Note that changing one’s adjusted offer within
Yi(pi) will not influence the player’s expected payoff by definition.

Stage 2: Player 2’s selection of p−2 only influences his payoff through the restriction it places on his max-
imum effective adjusted offer. This restriction is Ȳ = mini 6=2 Yi(pi). By continuity of the second derivatives
of utility, this restriction is maximized Yi(pi) = Yj(pj)∀i, j 6= 2. Call this number Ȳ (p2). Note that Ȳ (p2) is
strictly decreasing in Ȳ (p2). Assume that Player 2 will always pick a p−2 that achieves Ȳ (p2)

Note that when p2 = p∗2 this restriction will be binding as long as Ȳ < Y ∗. Furthermore, the only way to
achieve Ȳ = Y ∗ in this case is to set pi = p∗i ∀i 6= 2.

Stage 1: Player 1 may have some incentive to set p2 higher than p∗2 ordinarily (in order to slightly
reduce p1) but this incentive can be counteracted by the arbitrarily large mismatch penalty. Note that in
equilibrium Y3/p3 = Ȳ (p2) which is strictly decreasing in p2. Furthermore Y2(p2) is strictly increasing in p2,
and Ȳ (p∗2) = Y2(p∗2). Therefore, the only way to avoid the penalty is to set p2 = p∗2

This proposition takes advantage of two facts. First that players wish to reveal their information about
the preferences of others. Second, that when prices are correct, adjusted contributions match. This is not
the only mechanism which can be used to elicit Lindahl Prices when they are common knowledge among
participants. For example, one could use a mechanism where each player picks the price ratio for another
pair of players and then pays a penalty for mismatch of their adjusted offers. This version, however, has
potentially worse violations of budget balance.

One could also use a mechanism where each player proposes a price vector and then the true price vector
is equal to the most frequently proposed vector. If no two players agree, then the MCM is not executed.
This mechanism maintains the guaranteed budget balance and individual rationality, but it pays a cost in a
much greater multiplicity of equilibria.
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C.1 Information Extraction Example
In general, it is difficult to get full revelation due to the incentive player’s have to lower their own price. It
is sometimes even difficult to extract information players have about the preferences of others since it will
generally impact their own price indirectly. However, when the efficiency motive dominates and the incentive
for manipulation is low, it can be possible to get players to truthfully reveal their own prices.

Consider an environment where each player knows their own δi where δi ∈ {δL, δM , δH} where δL < δM <
δH . Each player send the mechanism maker a signal si ∈ {L,M,H}. The mechanism makers then selects a
vector of prices p summing to 1 as a function of messaged received. We are going to want the mapping to
have two properties

Assume that any assignment of specific individuals to δs is equally possible a priori. Say that each player
receives si ∈ {1, 2, 3}\{i} which is equal to j if δj > δk with probability ρ > 0.5. In other words it is an
informative signal about which other player has a higher δ.

g(Y ) =

{
Y (1 + 1

k ) Y ≤ k
k + 1 Y > k

Note under this public good production technology, if

pi
δi
≤ 1 + 1

k

Then Yi = Y ∗, otherwise Yi = 0. We want to choose k large enough to guarantee that the mechanism
designer cannot guess the order of δ wrong and still produce a payoff in order to simplify the discussion and
avoid hedging. This means we want k large enough that there does not exist prices pL ≤ pM ≤ pH such that
minYi > 0 when pj is not assigned to the player with δj where j ∈ {L,M,H}.

Lemma 1. We can guarantee that Y = 0 in the matching prices game whenever whenever pi is assigned to
a player with δj if

k > max
(

δL+2δM

1−δL−2δM
, δH+2δL

1−δH−2δL

)
Proof. Case 1 switching pH and pM

Maximum room to work with pL = δL + δL

k

Say then that pM = 1− pH − δL − δL

k
Minimum Yi will be player Ms
Maximized when pH = pM

pH = 1− pH − δL − δL

k

pH =
1−δL− δ

L

k
2

So to assure this produces minYi = 0 need
1−δL− δ

L

k
2 ≥ δM + δM

k

1− δL − δL

k ≥ 2δM + 2δM

k(
1− δL − 2δM

)
k ≥ δL + 2δM

k ≥ δL+2δM

1−δL−2δM

Case 2 switching pM and pL

Maximum room to work with pH = δH + δH

k

Say then that pL = 1− pM − δH − δH

k
Minimum Yi will be player Ls
Maximized when pM = pL

pM = 1− pM − δH − δH

k

pM =
1−δH− δ

H

k
2
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So to assure this produces minYi = 0 need
1−δH− δ

H

k
2 ≥ δL + δL

k

1− δH − δH

k ≥ 2δL + 2δL

k(
1− δH − 2δL

)
k ≥ δH + 2δL

k ≥ δH+2δL

1−δH−2δL

Note that these conditions also imply that minYi = 0 if pH and pL are switched
So we need

k > max
(

δL+2δM

1−δL−2δM
, δH+2δL

1−δH−2δL

)

We can now present the following corollary

Proposition 9. There is an equilibrium in the price matching prices setting in weakly dominant strategies
where each player reveals δi truthfully.

Proof. First we must formalize the mechanism used by the mechanism maker. We will assume that
the use a simple and natural mechanism. If a player is the only one to send signal si = j then they receive
pi = δj . If multiple players send the same signal, then one is chosen randomly to receive the corresponding
price and the other receives the remaining price. If all players send the same signal, then all receive pi equal
to a random δj .

We know that the player gets one of two payoffs: (1) the payoff that they get when each player gets the
correct price and (2) the default payoff that they get when at least one player gets the wrong price. We also
know (1) > (2). Therefore, the best action is the one which maximizes the chance of (1).

Case 1: All other players reveal truthfully. Player i revealing truthfully generates (1)with certainty.
Case 2: One other player sends an incorrect signal sj . Sending the correct si generates (1) with probability

1/2 regardless of which wrong signal was sent. Sending a wrong signal not equal to sj guarantees (2) since
there is now a wrong signal uncontested by a right signal. Sending a wrong signal equal to sj will lead to all
players sending the same signal which means (1) is generated with a probability of 1/6.

Case 3: Both other players send an incorrect signal. There will always be an uncontested incorrect signal,
so (2) is guaranteed.

Therefore, reporting truthfully is a weakly dominant strategy
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